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ABSTRACT
The work is devoted to the theoretical analysis of contact melling by the migrating heat source with
an arbitrary shaped isothermal heating surface.After the substantiated simplification the governing equa-
tions are transformed to the convenient for enginecring calculations relationships. Analytical solutions
are usced for numerical prediction of optimal shape of the heating surface. Problem is investigeted for the

constant and for temperature dependent physical properties of the mclt.
1. INTRODUCTION

Melting of solids by contact with a heating surface takes place in numero.s natural and
technological processes. These processes arc enumerated in the previous works [2, 4, 12—-14, 22] devoted
o contact melting problem and are divided into two groups. In onc group the melting material lics on the
hcating surface and pressed against it by some external force (for instance, the force of the weight of the
melting material). This situation ariscs when an unfixed solid melts in an enclosure [1, 16, 22] and in other
contact melting devices used in industry [8]. Another group of applications involves a moving hecat source
melting its way through the surrounding solid. This situation ariscs in such ficlds as welding [21), geology
[3], nuclear technology [9, 10] thermal drilling of rocks [4, 6, 18, 20] and glacicrs {11, 17, 19]. Thermal dril-
ling is commonly rccognized now as the most effective method of boring glaciers. Boring rocks, sands and
soil by thermopenctrators is a relatively new mcthod in mining enginecring. It has some advantages in
comparison with traditional rotary drilling. The most considcrable advantage of thermodrilling is that
three major facts of excavation (rock fracturing, debris removal and wall stabilization) arc accomplished
in a single integrated opcration.

This work is devoted to the theorctical analysis of the contact melting process by the moving heating

source with an arbitrary shaped isothermal heating surface.

2. ANALYSIS

2.1. The physical model and governing cquations.

Obviously cvery technological process where contact melting occurs has its own specific character. In
particular casc of thermodrilling. it is contact melting with a great specific load and hcat energy, with ar-

t)itrary shaped heating surface. Thermopenctrators arc radially symmeetric and in some cases ring—shaped, J



254

Third International Conference on Inverse Design Concepts and Optimization in Enginecring Scicnces
(ICIDES-TIN), Editor: G.S, Dulikravich, Washington D.C.. Ocigber 23-25 1991,

or toroidal, with a large central hole for forming and extracting the core sample [6]. A schematic diagram—l

of the contact melting for the thermodrilling conditions is shown in Fig.1. Axisymmectric heater —1 is pcn-
ctrating into the melting solid —2 with the velocity V under the effect of apphed cxternal force F. The
thermopenetrator is separated from the solid with a layer of melt =3, flowing along the thin channel be-
tween the heating surface ¥, and solid—liquid interface Y o Itis assumed that the solid—liquid interface
1s a sharply defined surface and melting occurs preciscly at temperature t,, melt flow is laminar and
two—dimensional. Molten layer is assumed to be incompressible Newtonian liquid with a temperature de-
pendent physical properties (except density). Experimental results [6, 15)indicated that the heat source ve-
locity attains its quasi—stcady, constant valuc V soon after initiation of melting. This fact justifics the next
assumption of quasi—stcady heat and mass transfer in the contact melting problem.

According to the physical model and assumptions enumerated above the govcerning differential equa-
tions of heat and mass transfer in the molten layer can be written as follows:

divi=0
p (5 V)o=G—p Vp+divT
Cop, (5 Vi) =div(i, V1 )+ ® (1)

where T is the deviator part of the tensor of internal stresses; o, p, ty, arc the liquids velocity, pressure
and temperature respectively; ® represcents the dissipative terms in heat transfer cquation; Cy, p;, 4, lig-
uid properties defined in Nomenclature; the rest of the symbols arc standard,

It is convenient for further analysis to usc two systems of coordinates fixed to the heating surface: cy-
lindrical coordinates (r, z) and local orthogonal boundary layer coordinates S and ¢ arc indicated in Fig. 1.

Transforming (1) to non—dimensional form and using the similarity method in a prchiminary analysis
the main dimensionless paramcters and numbers are gencrated [7]:

C(t —t) p.ouV\'"? C -
pc=¥, Ste= - =’ Kh=<;L_ v K, = LI Rc=Vp'd/pL Ko,

. L pLWd C’:
WP -~ PK K, 2
Br=— : s Pe=—b"—, K =2, K _=p gd/W )
Crp lty—1) K. A :

All the quantitics here arc defined in the Nomenclature Each of the dimensionless numbers (2) has
an exact obvious physical mcaning. In order to substantiate the simplification of the governing equations
(1), the analysis of the values of these non—dimensional numbers for the concrete conditions of thermal
drilling of ice and rock was carried out. Dimensionlcss parameter Ky~ 1073—107! physically represents
the ratio of characteristic thickness of the molten layer and charactcristic size of the heating surface d; cri-
terion K ~ 107 is the ratio of the characteristic mass force of the melt and external force; Reynolds
number Re~ 10™*— 107%; Brinkman number Br~ 1075—107* represents the viscous dissipation of heat in
the molten layer, Pecklet number Pe~ 10— 100; Stefan number Ste~ 1—10; K, K.~1.

After ncglecting terms of O0(K,, Kg, Re, Br) the governing nondimensional cquations of hecat and
mass transfer in the molten layer will take the following form:

1 8 . au”

— (R Hu)+—2=0 (3)
R’ Os ' an
yide _ 0 Ou

] IRl G @) ]
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where  m=2, P=p/w . S=s/d . H=bh/K,d . u=p /ul . C=C,/C7 .

v p v p t. —1
s° L n" L L m . - .
= y U = , O0== ,R = R(s)—cquation of gencrating linc
s Vp' » Vp' 1 N (s)—cq g g

b m

=}.L/AL, R=r/d , u

T, of heating surface ¥ ; h=h(s) —thickness of the molten layer mersurcd along the internal normal to

I'y; v, v, —longitudc and transversc velocitics in the molten laycer; all the physical properties of liquid Cy,

- . . . . m .m m
AL, uy arc nondimensionalized by their values CL,AL,uL at tempcerature tg;reference temperature (

fh—tm } is determined after nondimensionalization of Stefans condition,
t,—t_=PeK (t_—-1 ) (6)

b

Here t,, is initial temperature of meclting material. In the cquation (3) v=0 corresponds to the
ring—shaped penectrator with a large central hole. In this case since the thickness of the liquid film is of
O(K,) it is possible to ignore the axially symmetric behaviour of heat and mass transfer and to consider (r,
z) as the Cartesian coordinates; v=1 corresponds to the continuous heating surface without hole.
The boundary conditions in dimensionless form are following

At the heating surface ¥ ,(n=0)

u.=u"=0; 0=0h; (7
Gh =(,—-1.)/ (?h —t.); t,isthe unknown tcmperaturcon Y,
At the solid-liquid interface ¥ ,(n=1)
dR

U =0 u =-—=; =0 (8)

1 30 Q

dR , a0
— T e =g +(G)/ Stk Q= (— 5> )

4 .
7n )'z, ;
where 0,= (1,~t.. / (t;—t), t, is @ temperature of the solid material,n is an external relatively tomolten
layer normal to ¥ .

For the pressure in the exit points of the molten layer s=s, and s=s,
P(s,)=P(s,)=0 (10)

Since when v=1 it is only one exit point s=s, thon in this casc s;=0 is the critical point wherc u,=0
dP /ds=0.

The assumption of quasi—stationary hcat and mass transfer couses the equality of external force F
and the force of internal stresscs in the molten layer. This condition with the defined accuracy of 0(K,) in
non—-dimensional form is [4]

2 Ra
1= ﬁj‘ RPd4R (11)
R,—R g

1

The function Q in Stefan condition (9) is the non—dimensional density of heat flux to the solid from
surface ¥ 5 It’s value depends on the temperature distribution in the solid and is obtained from the solu-
tion of the heat transfer problem which is the same as the problem of temperature distribution in the sur-

rounding weldpool material [21]:

]
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I— 80, o6, 1 5 _.&0 _}

v

— —_ — Y0 = . "
Pe— + sz * R BRGS0 v =0 (12)
0.!2'“ = ], R,iizr?—wo' =0, Ol!z{ =0f’ (R,Z)=(T,Z)/d, (13)

0 is temperaturce distribution on surface ¥ , formed after melting (Fig.1). Problem (12) (13) was
solved in [4, 18] numecrically by the boundary element method.

2.2. Analytical solutions

In [4] it was proved that boundary value problem (12), (13) admits an analytical solution as a func-
tion of onc independent variable when and only when the gencrating curve I'jof Y . is parabola. In
parabolic coordinates o and 7 related to the coordinates R and Z by R =10, Z= 0.5(¢°—1% with boundary
conditions on y_ ; T=1,,0,= 1, in infinity: 1—oc, 00, cquasion (12) has the following solution

Ei(— ) /B e), v=t

0, = . _ (14)
erfe( [ 50 /erfe( [ 5ot ), v=0

where crfc(x)=\/-2——n exp( — u’)du, Ei(-x):f Mdu x>0
x ‘1

According the formulac (9) and (14) the heat flux distribufion on Y o is

Pcc—‘z‘r 2Eif — o =
_ m/{aEx( ), v=1 (15)

J «,;; +0° Vraerfe(a), v=0

where o’ = Pct, / 2 Taking into account the fact that the distance between Y p and ¥ is the value
of 0(K,) we can rewrite (15) with the accuracy of 0K,
~dR /{ain(—az), v=1

Q=Pec-c
ds Ve acrfe(z), v=0

(16)

After simple transformation of equations (3) and (4) with invoked boundary conditions (7), (8) and
(10) the velocities and pressure distribution in the molten Laver are obtained

Rv+l_Rv+1 ’7 —n
u, = J' dn )
(v+1)HDR H
12 R™ -R"H s
. _Rv+1
=v+1-[‘ RED 9
Yn—n, )
where D = J‘ -_[ r]dn J‘d”
", — "m,—1n
¢=er‘ —J‘ L ndn
0 o H

R, isa critical point which is determined by (19) and the boundary coudition P(s,) =0
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when v=11itissupposed that R, =0
According the assumption 0, = const the temperature distribution in the molten layer is sought as a
(21n

function of onc independent variable
0=20(m
As follows from interfacial condition (9) in this case
H% = H = const. (22)
Last formulac (22) and (21) simplify cqualitics (18), (19)
1 dR
- .2 2
u, D g e 23)
P 1 ) Rv+1-Rv.+1 d 24
=(v+1)D.j‘, N s (24)
(25)

and hcat transfer equation in the molten layer
PcHo(n)d6 d ,.d0
— g = ()
n
(26)

Integration of this cquation with the associated boundary conditions
Q 1

do =
0],,_1 =0; —d_nl"" = HE; E=Pe(B
ds

o))

reduce to the following relationship
1 D7 r!
=1 PcH [ ¢C
0(n)=EH I exp( T dn)dn
puting in (27) n =0 the temperaturc of the heating surface is deicrmined
PcH (' oC
[ £ anan (23)

1
=1
6, = EHJO—}: exp( )

In order to simplify further computations assume that T, is specified by the equation Z= A(R-R, )2.

dR

In this case heat flux distribution Q is determined by the equality (16), where
—_— - 1
s [144a'®R-R_)

P(s) introduction into (11) yields
_, 1 R, R(Rv+\_Rv.+l)
f 2 - dR (29)
R, 1+4A°(R—R )

=(R:-Rf)(v+ 1’D

where R =R, =0 if v=1
heating surface to the melt. Combining heat cnergy delinition in non—dimensional form

Onc of the most important characteristics of contact melting is the heat encrgy removal from the
FaR, .d0
N=2 f =(-i— dR
n . H( /dq)l"'°

with the equation (27) we have

]
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.17 1!
[_ N=x(R] - Rf)Ecxp(pCHJ CT“’d;;) (30)_]

D 0
The quantity of heat energy calculated according (30) excesses the minimum heat power Ny which is

nceessary to sustain the chosen melting velocity V. In non—dimensional form
N, ==(R, — R )1 +1/St)

Here Ny in comparison with N docs not contain the energy rate for heating melt and uscless heat
dissipation in the surrounding thermopenctrator solid material.

The main scopc of present paper is to clucidate the influence of the heating surface shapc upon the
effectivety of the contact melting process. Defining efficiency of the heating surface as a ratio B=Ny/N
we’ll have

1+

Ste

1
- _PeH co
= 3 exp{(—PcH /D Jl) 3 dn) (31

Equations (23), (24), (27)—(31) simulatc heat and mass transfer processes in contact meliing problem
with the accuracy of 0(K,). They arc convenient for prediction of contact meclting process for matcrials
with variable physical propertics such as different kinds of rocks and sands.

When the physical properties of mclt arc constant (for cxample in the case of ice melting) cquations
(17}, (23), (24), (27), (28), (30), (31). allows thc considerable simplification.

G(R'+1 _Rv.+1
u=——"———F——"-n(l—-n (32)
(v+ DR'H
R
u, = —Sn’e-m (33)
2 v+l v+1
12 (*R—R,
e (34)
1
0 = EHexp(PeH / 2 fexp[ﬁcﬁq’(l—o.sn)]dn (35)
n
N=n(R] - Rj)Ecxp(%) (36)
arly
Ste PcH
3. RESULTS

Numerical prediction of u,, u,, P, H, 0, § and other quantitics of interest is carricd out for ice and
rock thermodrilling conditions. All the calculations of rock melting are bascd on cquations (23), (24), (27)
—(31). Relatively complete description of basalt physical propertics at high temperature is available in [§,
6]. Non—lincar equation (27) is solved numecrically by the itcration procedure. After this other quantitics
arc obtained automatically in a view of equations (23), (24), (28)—(31). As the initial estimate of iterative
process solution (35) is chosen. When the ice boring process is investigated formulac (29), (32)—(37) arc
uscd. The values of icc physical propertics onc can find for cxample in [4, 17, 19]. EfTectiveness of the

heating surfacc is estimated by the value of parameter £ Tt is shown in previous works [4, 17] that in com-

J
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parison with the other (conc—shaped, sphere—shaped, cte.) thermopenctrators of the same power outpul—l

the parabolic shaped penctrator attains the highest melting velocity, Therefore present paper is devoted to
more detail analysis of contact melting with parabolic heating surfacc. The clongation of the surface is
characterized by the valuc of shape paramcter A. The results of numerically predicted efficiency as a fune-
tion of A for different conditions of ice and rock melting are plotted in Fig. 2. Numecrical results indicates
that for slow melting when heat transfer in the molten layer is of minor significance and in the contrary
the heat dissipation increascs the flat heating surfuce (A < 1) is morc cffeclive. Vice versa for high speed
melting the heat encrgy rate in the melt is dominating in comparison with the dissipation in surrounding
solid material. So in this casc the clongate form of heating surfacce is preferable. According the calcula-
tions presented in Fig.2 there is the interval for melting velocitics when the definition of the optimal shape
is not trivial. For toroidal penctrator (v=0)and icc melting conditions 20 < Pc < 55; for non—coring
penetrator (v=1) and rock mclting conditions 40 < Pc < 75. In order to find the maximum of § and the
corresponding value of A, the derivative of § with respect to A is calculated. When the problem is
non—lincar and the physical propertics of the melt depend on temperature the derivative is calculated
numerically; when g, ¢, 4 are constants it is feasible to calculate 8/, analytically. In a view of rclationship
(37) the equation B/, =0 for computation of the optimal A can be written as follows: — PcH’ AE— E’A
=Q.
This simplc cquation is solved by dividing segment in half method.

NOMENCLATURE
A — shapc paramcter of the heating surfacc; g — acccleration;
a ~— thermal diffusivity; h — melt layer thickncss;
¢ — spccific heat; L — latent melting heat;
d — characteristic size of heating device; P — pressure;
F — cxternal foree; Q — hcat flux density;

G — mass force;

1, Z — cylindrical coordinates defined in Fig.1;

r,— internal radius of the heating device;

r,— external radius of the heating surface;

s,, s;— coordinates of the end points of gencrating curve of the heating surfacc;

t — tempcraturc; v—velocity of the molten layer;

v,, v,~ longitude and transverse velocitics in the molten layer;

V — mclting velocity;

s,&— longitudinal and transverse local coordinates in the molten layer defined in Fig. 1;

W—spccific axial load from hcating device side (W = -——Z—F—)

n(r, — r?)
p— cfficicney;
I'— gencrating curve of surface };
A— thermal conductivity;
p—dynamic viscosity cocfficicnt;
p— density; -
|_ o, T— parabolic coordinatcs.
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I_Indiccs: -l

L — liquid phasec; h — heating surflace;
s — solid phase; m — melting surface;
* — critical point; oo — value in infinite point.

All the non—dimensional parameters, numbers and functions are determined in the text: (2}, (5), ctc.
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Fig. 1. Schematic representation of the contact mclting process: I-heating dcvice, 2~mclting solid,

3-molten layer.
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Fig. 2. Flficiency § as a function of shapc paramecter A.
a) Icc boring conditions; v=0,R, =3.2 (ring shaped penetrator)

b) Rock boring conditions; v=1,R, = R, =0 (non—coring penctrator)



